Cevaplar

  • Eodev Kullanıcısı
2012-11-22T23:45:45+02:00

KARMAŞIK(KOMPLEKS) SAYILAR


ax² + bx + c = 0 denkleminin Δ < 0 iken reel kökünün olmadığını daha önceden biliyoruz. Örneğin, x² + 1 = 0 denkleminin reel kökü yoktur. Çünkü,( x² + 1 = 0 Þ x² = -1 ) karesi –1 olan reel sayı yoktur.
Şimdi, bu türden denklemlerin çözümünü mümkün kılan ve reel sayılar kümesini de kapsayan yeni bir küme tanımlayacağız...

A. TANIM:
a ve b birer reel sayı ve i = Ö-1 olmak üzere, z = a + bi şeklinde ifade edilen z sayına Karmaşık ( Kompleks ) Sayı denir. Karmaşık sayılar kümesi C ile gösterilir.
C = { z : z = a + bi ; a, b Î R ve Ö-1 = i } dir.
( i = Ö-1 Þ i² = -1 dir.)
z = a + bi karmaşık sayısında a ya karmaşık sayının reel ( gerçel ) kısmı, b ye karmaşık sayını imajiner (sanal) kısmı denir ve Re(z) = a, İm(z) = b şeklinde gösterilir.

Örnek:
Z1 = 3 + 4i, Z2 = 2 – 3i, Z3 = Ö3 + i, Z4 = 7, Z5 = 10i sayıları birer karmaşık sayıdır.
Z1 karmaşık sayısının reel kısmı 3, imajiner kısmı 4 tür.
Z2 = 2 - 3i Þ Re(Z2) = 2 ve İm(Z2) = -3,
Z3 = Ö3 + i Þ Re(Z3) = Ö3 ve İm(Z3) = 1,
Z4 = 7 Þ Re(Z4) = 7 ve İm(Z4) = 0,
Z5 = 10i Þ Re(Z5) = 0 ve İm(Z5) = 10 dur.

Örnek:
x² - 2x + 5 = 0 denkleminin çözüm kümesini bulalım.

Çözüm:

Verilen denklemde a = 1, b = -2, c = 5 tir.
Δ = b² - 4ac = ( -2) ² - 4.1.5 = -16 = 16.i²
X1,2 = -b ± ÖΔ = -(-2) ± Ö16i² = 2 ± 4i = 1 ± 2i dir.
2a 2.1 2
Ç = { 1 – 2i, 1 + 2i } dir.

1 5 1
2012-11-23T00:21:50+02:00



ax² + bx + c = 0 denkleminin Δ < 0 iken reel kökünün olmadığını daha önceden biliyoruz. Örneğin, x² + 1 = 0 denkleminin reel kökü yoktur. Çünkü,( x² + 1 = 0 Þ x² = -1 ) karesi –1 olan reel sayı yoktur.
Şimdi, bu türden denklemlerin çözümünü mümkün kılan ve reel sayılar kümesini de kapsayan yeni bir küme tanımlayacağız...

bunun gibi olcak işte anla yani mantık yürüt zeki kıza benzemiyosun gerçi ama neyse ypçak bişi yok tatlım grşrzzzzzzzzz

0