Cevaplar

2012-12-09T17:38:41+02:00

Örnek: A = {a, b, c} ve B = {1, 2, 3, 4} kümelerinin tüm elemanlarını bir araya getirerek yazalım:

Çözüm: {a, b, c, 1, 2, 3, 4} olur. Bu küme A ve B kümelerinin birleşim kümesidir

Kümelerde her eleman yalnız bir kez yazılır. İki kümenin birleşimi bu iki kümenin tüm elemanlarından oluşur. Birleşim işlemi “∪” sembolüyle gösterilir. A ve B gibi iki kümenin birleşimi sembolle “A ∪ B” biçiminde gösterilir,“A birleşim B” diye okunur.

Örnek: Aşağıdaki Venn şemasına göre A, B ve A∪ B kümelerini yazalım. Ayrıca eleman sayılarını bulalım.

 

Çözüm: A = {1, 2, 3, 4, 5}  s(A) = 5

B = {1, 2}  s(B) = 2

A ∪ B = {1, 2, 3, 4, 5}  s(A) = 5

 

Örnek: A = {a, b, c} ve B = {4, 5, 6} kümelerinin eleman sayıları arasındaki ilişkiyi inceleyelim


Çözüm: s(A) = 3 ve s(B) = 3’tür.


Eleman sayıları aynı olan kümeler, birbirine denktir.

 

Ayrık küme: Ortak elemanı olmayan kümelere ayrık küme denir.

 

Örnek: C = {z, t} ve D = {3, t, z} kümeleri veriliyor. C ∪D ve D∪C kümelerini bulup karşılaştıralım.

Çözüm: C ve D’nin ortak elemanları vardır. Bu elemanlar birleşim kümesine yalnız bir kez yazılmalıdır. O hâlde;

 

C ∪ D = {z, t} ∪ {3, t, z} = {z, t, 3} olur.

D ∪ C = {3, t, z} ∪ {z, t} = {3, t, z} olur.

Buradan, C ∪ D = D ∪ C olduğu görülür.


Örnek: Aşağıdaki şemayı ve birleşim işlemini inceleyelim:

 

Çözüm: B ∪ (C ∪ D)= {2, 3, 4} ∪ ({1, 2, 5} ∪ {5, 6})

= {2, 3, 4} ∪ {1, 2, 5, 6}

= {2, 3, 4, 1, 5, 6} olur.

(B ∪ C) ∪ D= ({2, 3, 4} ∪ {1, 2, 5}) ∪ {5, 6}

= {1, 2, 3, 4, 5} ∪ {5, 6}

= {1, 2, 3, 4, 5, 6} olur. Buradan,

B ∪ (C ∪ D)= (B ∪ C) ∪ D olduğu görülür.

 

Kümelerde birleşim işleminin birleşme özelliği vardır.


Örnek: M = {m, n} ve P = { } kümeleri veriliyor. M∪P kümesini bulalım.


Çözüm: M∪ P = {m, n} ∪ { } = {m, n} olur.


Bir kümenin boş kümeyle birleşimi, o kümeye eşittir.


Örnek: A = {1, 2, 3} kümesine eşit olan B kümesini yazalım.


Çözüm: Eşit olan kümeler aynı elemanlardan oluşacağından,

B = {1, 2, 3} olur.

 

Örnek: K = {x, y, z} olsun K ∪ K kümesini bulalım.


Çözüm: K∪ K= {x, y, z} ∪ {x, y, z}

= {x, y, z} olur.


1 5 1
  • Eodev Kullanıcısı
2012-12-09T17:39:16+02:00

interaktiftest sisesinden bak.........................

1 1 1