Cevaplar

2012-12-27T21:22:05+02:00

ulalım:

Çözüm: 
x + 6 = 10 denkleminde (+6) nın toplama
işlemine göre ters elemanı olan (-6), eşitliğin her iki yanına eklenirse eşitlik bozulmaz.

Buna göre; x + 6 = 10
x + 6 + (-6) = 10 + (-6)
x + 0 = 4
x = 4 olur.
Ç = {4} olur.

Verilen bir denklemin çözümünün doğru yapılıp yapılmadığının araştırılmasına, denklemin sağlaması denir.

Bulunan kök, denklemde yerine yazılarak denklemin sağlaması yapılır böylece bulunan kökün doğruluğu kontrol edilir.

4 sayısının x + 6 = 10 denklemini sağlayıp sağlamadığını kontrol edelim:

x = 4 için x + 6 = 10
4 + 6 =10
10 = 10 olduğundan 
çözüm doğrudur.
x + 6 = 10
x = 10 – 6
x = 4 ve Ç = {4} tür. 

Demek ki; her iki şekilde yapılan çözüm, aynı elemanı veren çözüm kümesidir.

2. Verilen denklem parantezli olursa; aşağıda yapıldığı gibi, önce dağılma özeliği uygulanarak parantezler kaldırılır. Sonra da içerisinde bilinmeyeni olan terimler eşitliğin bir tarafına, öteki terimler de diğer tarafına geçirilir. Gerekli işlemler yapılarak denklem çözülür. 


2.(x + 3) + 7 = 25 – 2.( x - 2 )

Önce, çarpma işleminin toplama ve çıkarma işlemleri üzerine dağılma özeliklerini uygulayalım


Çözüm:

2.(x + 3) + 7 = 25 – 2.( x - 2 )
2x + 6 + 7 = 25 – 2x + 4 
2x + 13 = -2x + 29
2x + 2x = 29 – 13
4x = 16
x = 16 : 4
x = 4 ve Ç = { 4 } olur.

3. Verilen denklem kesirli olursa, çözümü için önce paydalar eşitlenir. Denklem paydadan kurtarılır. Bunun için, eşitliğin iki yanını ortak payda ile çarpmak gerekir. Sonra da örnek çözümlerde belirtilen kurallara göre denklem çözülür.

3.(x–2) _ 2–x _ _ x _ 5 denkleminin çözüm 
4 2 ¯ 5 2 kümesini bulalım:

Çözüm:
Paydaları eşitlersek:

3.( x- 2) – 2.( 2 – x ) – 4x _ x - 10
4 ¯ 4


3x – 6 – 4 + 2x – 4x =x – 10
3x + 2x – 4x – x = -10 + 6 + 4 
5x - 5x = -10 + 10
0.x = 0

Bu eşitlik bütün reel sayılar için geçerli olduğundan verilen denklemin çözüm kümesi Ç=R dır.

4. 5 sayısının, 2x – 6 = 3 denkleminin kökü olup olmadığını araştıralım:

Çözüm:
x = 5 için 2x – 6 = 3 
2 . 5 – 6 = 3
10 – 6 = 3
4 ≠ 3 olur

Buna göre 5 sayısı 2x – 6 = 3 denkleminin çözüm kümesi değildir. Verilen bir sayının, verilen bir denklemin kökü olup olmadığını anlamak için verilen denklemdeki bilinmeyen sayı yerine yazılır. İşlemler yapılır.eğer eşitlik sağlanıyorsa bu sayı denklemin çözüm kümesi, sağlanamıyorsa çözüm kümesi değildir denir.

5. –5 + 6 _ 7 denklemini çözelim
3 ¯ 1

Çözüm:

–5 + 6 _ 7 (Önce paydaları eşitleyelim.)
3 ¯ 1
( 3 )

-5 + 6 _ 21 ( Çarpma kuralı )
³˙ 3 ¯ 3 ˙³

-5x + 6 = 21 (Toplama kuralı )
-5x + 6 + (-6) = 21 + (-6)
-5x = 15

-5x _ 15 (Bölme kuralı )
5 ¯ 5

x = -3 tür. Ç = {-3}

6. 2.(5x - 6) + 2 = 30 denkleminin çözüm kümesini R de bulalım

Çözüm:
Çarpma işleminin çıkarma işlemi üzerine dağılma özeliğini uygulayarak parantezi açalım.

2.(5x - 6) + 2 = 30 ise 
(2 . 5x) – (2 . 6) + 2 = 30
10x – 12 + 2 = 30
10x – 10 = 30 olur.

Şimdi ( -10) un toplama işlemine göre ters elemanı olan (+10) u eşitliğin her iki tarafına ekleyelim.

10x – 10= 30 ise 
10x – 10 + (+10) = 30 + (+10)
10x + 0 = 40
10x = 40 10x _ 40
10 ¯ 10
x = 4 ve Ç= {4} olur.


7. 2x – 5 = 7 denklemini R de çözelim:

Çözüm:
Eşitliğin her iki tarafına, (-5) sayısının toplama işlemine göre tersi olan (+5) sayısını ekleyelim.

2x – 5 + 5 = 7 + 5 2x . 0 = +12
+2. x = 12 eşitliğinin her iki tarafını (+2) nin çarpma işlemine göre tersi olan 1 ile çarpalım:
2

1 6
2 . . 1 _ 12 . 1 
2 ¯ 2
1 1

x = 6 bulunur.
Ç = 6 şeklinde çözüm kümesi yazılır.

8. 5x + 2 = 27 denklemini R de çözelim.

Çözüm:
Eşitliğin her iki yanına (+2) nin toplama işlemine göre tersi olan (-2) sayısını ekleyelim.



0

0