Cevaplar

2013-01-02T20:30:58+02:00

Fraktal; matematikte, çoğunlukla kendine benzeme özelliği gösteren karmaşık geometrik şekillerin ortak adıdır. Fraktallar, klasik, yani Eukleidesçi geometrideki kare , daire , küre gibi basit şekillerden çok farklıdır. Bunlar, doğadaki, Eukleidesçi geometri aracılığıyla tanımlanamayacak pek çok uzamsal açıdan düzensiz olguyu ve düzensiz biçimli tanımlama yeteneğine sahiptir. Fraktal terimi �parçalanmış� yada �kırılmış� anlamına gelen Latince "fractus" sözcüğünden türetilmiştir. İlk olarak 1975�te Polonya asıllı matematikçi Beneoit B. Mandelbrot tarafından ortaya atılan fraktal kavramı, yalnızca matematik değil fiziksel kimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin doğmasına yol açmıştır.

Tüm fraktallar kendine benzer ya da en azından tümüyle kendine benzer olmamakla birlikte, çoğu bu özelliği taşır. Kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününe benzer. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza değin sürebilir; öyle ki,her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve ağaç kabuğunda kolayca gözlenebilir. Bu tip tüm doğal fraktallar ile matematiksel olarak kendine benzer olan bazıları, stokastik, yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler,düzensiz biçimli olduklarından ötürü Eukleidesçi şekilleri ötelenme bakışına sahip değildirler. (Ötelenme bakışımına sahip bir cisim kendi çevresinde döndürüldüğünde görünümü aynı kalır.)

Fraktalların bir başka önemli özelliği de, fraktal boyut olarak adlandırılan bir matematiksel parametredir. Bu cisim ne kadar büyütülürse büyütülsün ya da bakış açısı ne kadar değiştirilirse değiştirilsin, hep aynı kalan fraktalların bir özelliğidir. Eukleidesçi boyutun tersine fraktal boyut, genellikle tam sayı olmayan bir sayıyla, yani bir kesir ile ifade edilir. Fraktal boyut, bir fraktal eğri yardımıyla anlaşılabilir.

Oluşturulmasının her aşamasında bu tip bir eğrinin çevre uzunluğu 4/3 oranında büyür. Fraktal boyut (D)4'e eşit olabilmesi için alınması gereken kuvvetini gösterir; yani;

3d =4 bu bakımdan fraktal eğriyi niteleyen boyut log4/log3 ya da kabaca 1,26'dır. Fraktal boyut, Eukleidesçi olmayan belirli bir biçimin karmaşıklığını ve şekil nüanslarını açığa çıkarır.

Kendine benzerlik ve tamsayı olmayan boyutlu kavramlarıyla birlikte fraktal geometri, istatistiksel mekanikte, özellikle görünürde rastgele özelliklerden oluşan fiziksel sistemlerin incelenmesinde giderek daha yaygın olarak kullanılmaya başlanmıştır. Örneğin, gökada kümelerinin evrendeki dağılımının saptanmasında ve akışkan burgaçlanmalarına ilişkin problemlerin çözülmesinde fraktal benzetimlerden (simülasyon) yararlanılmaktadır. Fraktal geometri bilgisayar grafiklerinde de yararlı olmaktadır. Fraktal algoritma ise, engebeli dağlık araziler ya da ağaçların karışık dal sistemleri gibi karmaşık, çok düzensiz doğal cisimlerin gerçektekine benzer görüntülerinin oluşturulabilmesini olanaklı kılmıştır.

2 2 2
2013-01-02T20:31:14+02:00

Fraktallar
Bir şeklin orantılı olarak küçültülmüş veya büyütülmüş modelleriyle inşa edilen örüntülere fraktal adı verilir. Halı veya kilim desenlerini, pisagor ağacını fraktallara örnek verebiliriz.Bir cismi oluşturan parçalar ya da bileşenlerin cismin tamamına benzemesi matematikte "fraktal" olarak adlandırılır.Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde tekrarlanır. Öyle ki bütünün her bir parçası büyütüldüğünde yine cismin bütününe benzer. Fraktal terimi parçalanmış ya da kırılmış anlamına gelen Latince "fractus" sözcüğünden türetilmiştir.

İlk olarak 1975’te Polonya asıllı matematikçi Beneoit B. Mandelbrot tarafından ortaya atılan fraktal kavramı, yalnızca matematik değil fizikokimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etki-ler meydana getiren yeni bir geometri sisteminin doğmasına yol açmıştır. Bu tanımlar ışığında gözlerimizi tabiata çevirdiğimizde sayısız fraktal cisimlerle, hatta manzaralarla karşılaşırız. Kar tanelerinin kristal şekilleri kendi başlarına birer fraktaldır. Bir ağaç, bir gövdeye, onun üzerinde birkaç ana dala, her bir ana dalın üzerindeki daha ince dallara ve onların da üzerinde bu şekilde çoğalan nice dallara sahiptir. Baktığınızda bu ağacın geometrisi bir kaos ve düzensizlik içindedir. Ağaçtan bir dal koparıp onu incelediğinizde o dal parçası şekil olarak ağacın kendisine benzemekte ve adeta minyatür bir ağaç oluvermektedir. Bu dal parçasının kendine ait bir gövdesi, kolları ve daha ince dalları vardır. Belirli bir ağacın şekli üzerinde tohumdaki genetik program, alabildiği güneş ışığı, iklim koşulları, maruz kalınan hastalıklar, toprak koşulları, diğer ağaçların konumu vb. de dahil olmak üzere birbirine bağlı birçok karmaşık etken rol oynar. Akciğerlerimizdeki bronş ve bronşcuklar da ağaçlardaki gibi fraktal uzanıma sahiptir. Akarsular da yatakları boyunca kollara derelere çaylara ve daha küçük kanallara bölünür. Bir dere ya da nehir tek başına incelendiğinde o da nice kollara ayrılır. Benzer durum vücudumuzdaki damar sisteminde de mevcuttur. Çöllerdeki kumların rüzgar nedeni ile aldığı şekiller ve sakin bir havada denizdeki dalgaların şekilleri de fraktal yapıya birer örnek olarak verilebilir. Tabiatta var olması mümkün olan çok geniş ve eşsiz bir fraktal dağılım bulunmaktadır. Özellikle bilgisayar ekranlarında matematiksel formüllerle üretilen bazı fraktal biçimlerde eşsiz olma durumu bir dereceye kadar mekaniktir. Doğadaki ve sanattaki diğer fraktallerde kendi kendine benzerlik, bu tanıma baş kaldırırcasına farklı olan şeylerle bir arada bulunur. 


Kaynak: http://www.cerezforum.com/matematik-geometri/39727-fraktal-fraktal-nedir-fraktal-nerelerde-kullanilir.html#ixzz2GqPSdm5e buradanda girip bakabılırsn.

2 5 2