Cevaplar

En İyi Cevap!
  • Eodev Kullanıcısı
2013-01-09T17:35:19+02:00
Sayfa 2 / 2


ÖRNEKLER

Örnek 1:

Rakamları farklı 5 basamaklı 9452X sayısının 2 ile bölünebilmesi için, X değerlerinin toplamı kaç olmalıdır?

Çözüm:

9452X sayısının 2 ile bölünebilmesi için, X in alabileceği değerler

0, 2, 4, 6, 8

olmalıdır. Oysa, bu sayının rakamlarının farklı olması istendiğinden, X rakamı 2 ile 4 olamaz. Dolayısıyla, X in alabileceği değerler

0, 6, 8

dir. Bu değerlerin toplamı

0 + 6 + 8 = 14

olur.

Örnek 2:

5 basamaklı 1582A sayısının 3 ile bölünebilmesini sağlayan A değerlerinin toplamı kaçtır?

Çözüm:

Bir sayının 3 ile bölünebilmesi için, sayının rakamları toplamının 3 ün katları olması gerektiğinden,

1 + 5 + 8 + 2 + A = 3 . k

olmalıdır. Buradan,

16 + A = 3 . k

olur. Böylece, A

2, 5, 8

değerlerini alması gerekir. Dolayısıyla, bu değerlerin toplamı

2 + 5 + 8 = 15

olarak bulunur.

Örnek 3:

İki basamaklı mn sayısı 3 ile tam olarak bölünebilmektedir. Dört basamaklı 32mn sayısının 3 ile bölümünden kalan kaçtır?

Çözüm:

mn sayısı 3 ile tam olarak bölünebildiğine göre,

m + n = 3 . k

olması  gerekir. O halde, 32mn sayısının 3 bölümünden kalan şöyle bulunur:

3 + 2 + m + n = 5 + ( m + n )

= 5 + 3 . k

= 3 + 2 + 3 . k

= 2 + 3 . k

Dolayısıyla, Kalan = 2 dir.
Örnek 4:

Dört basamaklı 152X sayısının 4 e bölümünden kalan 2 olduğuna göre, X in alabileceği değerler toplamı kaçtır?

Çözüm:

152X sayısının 4 e tam olarak bölünebilmesi için, sayının son iki basamağının yani 2X in, 4 ün katları olması gerekir. O halde, X,

0, 4, 8                      ...  (1)

değerlerini alırsa, 152X sayısı 4 e tam olarak bölünür. Kalanın 2 olması için, (1) nolu değerlere 2 ilave edilmelidir. Bu taktirde, X,

2, 6

değerlerini almalıdır. Dolayısıyla, bu değerlerin toplamı

2 + 6 = 8

olur.

Örnek 5:

666 + 5373

toplamının 4 e bölümünden kalan kaçtır?

Çözüm:

666 nın 4 e bölümünden kalan şöyle bulunur:

66 nın 4 e bölümünden kalana eşit olup, kalan 2 dir.

5373 ün 4 e bölümünden kalan şöyle bulunur:

73 ün 4 e bölümünden kalana eşit olup, kalan 1 dir.

Bu kalanlar toplanarak, toplamın kalanı

2 + 1 = 3

bulunur.

Örnek 6:

99999 . 23586 . 793423 . 458

çarpımının 5 e bölümünden kalan kaçtır?

Çözüm:

Bir sayının 5 e bölümünden kalanı bulmak için, birler basamağına bakılması gerekir ve birler basamağındaki rakamın 5 e bölümündeki kalana eşittir. Dolayısıyla,

99999 sayısının 5 e bölümünden kalan 2 dir.

23586 sayısının 5 e bölümünden kalan 1 dir.

793423 sayısının 5 e bölümünden kalan 3 tür.

458 sayısının 5 e bölümünden kalan 3 tür.

Bu kalanların çarpımı,

1 5 1
2013-01-09T17:35:24+02:00

Örnek 1:

Rakamları farklı 5 basamaklı 9452X sayısının 2 ile bölünebilmesi için, X değerlerinin toplamı kaç olmalıdır?

Çözüm:

9452X sayısının 2 ile bölünebilmesi için, X in alabileceği değerler

0, 2, 4, 6, 8

olmalıdır. Oysa, bu sayının rakamlarının farklı olması istendiğinden, X rakamı 2 ile 4 olamaz. Dolayısıyla, X in alabileceği değerler

0, 6, 8

dir. Bu değerlerin toplamı

0 + 6 + 8 = 14

olur.

0