Cevaplar

En İyi Cevap!
2013-01-10T15:05:41+02:00

BİZANS'TA CEBİR 
Bazı kaynaklar, Bizans'ta ileri bir matematiğin varlığı hakkında geniş bilgi verirler. Ortalama 1000
yıllık hayatı olan Bizans'in, matematik tarihinde, Eski Yunan matematiğini, ilerletip geliştirmesi bakımından, pek parlak bir duruma sahip değildi. Bu devir matematikçileri olarak belirtilen ve aynı zamanda Nikomedya (İzmit) rahibi olan Masimus Planudes (İzmit 1260 - İstanbul 1310), Dio-fantos' un birinci ve ikinci kitaplarına dair sadece tefsir yazabilmiştir. M. Planudes'in en çok bah-sedilen eseri, 1300 yılında yazdığı Hint Hesabı'dır. Planudes; bu eserinde, karekök alma kuralı-nı, Diafantos'un eserini esas almak suretiyle Hint metodunu tatbik etmişti. 
14. yüzyılın ikinci yarısından itibaren, 15. yüzyılın ilk yarısına kadar (İstanbul'un fethi yıllarına ka-dar), Bizans matematiğinde bilim tarihinde isim bırakmış matematikçilere rastlanılmaz. Bu tarih-lerde, siyasal olaylar yüzünden, bilim ihmal edilmiştir. Bu tarihlerin ilginç bir olayı, İstanbul'da giz-li kalmış özel kişisel kitaplıkların dışında, elyazması ne kadar eser varsa İtalya'ya götürülmüştür. İstanbul'da el yazmalarına ait hiç bir eser bırakmamışlardır. Givanni Aurispa'nin (1369-1460) Bi-zans'tan Venedik'e 238 el yazması eser götürdüğü tarihi bir olay olarak bilinmektedir. 
Bizans matematiğinin durumunu, ayrıntılarıyla incelemiş olan Hamit Dilgan Matematik Tarih ve Tekamülüne Bir Bakış adlı eserinde şöyle yazar : "Bizans'ta tam anlamıyla büyük matematikçi yetişmemiştir. Bir çoğunun eserleri (birkaçı müstesna) mütevazi ve basittir, Hatta bazılarının eser-lerindeki problemlerin, yazarları tarafından anlaşılamadığı seziliyor... Bütün bu hususlar, Eski
Yunan dehasının gerilemiş ve tükenmiş olduğuna canlı birer örnek teşkil eder. Şu kadar var ki,
Bizans matematiği, aynı devrelerdeki Roma matematiğinden çok daha ileri bir durumda olmakla beraber, Doğu İslam Dünyası Matematiğine nazaran çok geri kalmıştı.'' 

Kaynak: http://www.msxlabs.org/forum/soru-cevap/213842-cebir-nedir-tarihcesi-nasildir.html#ixzz2HZrnxLQh

2 5 2