özdeşliği tanımlayınız önemli özdeşlikleri açıklayınız özdeşlikle denklm arasındaki farkı bulunuz çarpanlara ayırma yöntemleri hakkında bilgi verin cebirsel ifadeyi modelleyerek çarpanlara ayırın ( abuk subuk yazmayın şikayet var en iyi çözüm 60 puan ;) )

hepsini yapın yarım yapmayınn

1

Cevaplar

2013-01-17T21:15:41+02:00

Mathematical Intelligencer okurları tarafından yanıtlanan bir anket sonucuna göre Euler özdeşliği matematiğin en hoş kuramıdır.[1] Physics World tarafından 2004 yılında yapılan bir diğer anket sonucuna göre ise Euler eşitliği Maxwell denklemleri ile birlikte "gelmiş geçmiş en büyük denklemler" olarak belirlenmiştir.[2]

Paul Nahin'in Dr. Euler'in Enfes Formülü (2006) adlı kitabı Euler özdeşliğine adanmıştır. Dörtyüz sayfa uzunluğundaki bu kitap Euler özdeşliğinin "matematiksel güzelliğin zirvesine ulaştığı" kanısındadır.[3]

Constance Reid, Euler özdeşliğinin "matematiğin en önemli formülü" olduğunu öne sürmüştür.[4]

Gauss'un bu formülü ilk duyduğunda anlayamayan hiçbir öğrencinin birinci sınıf bir matematikçi olamayacağını söylediğine inanılmaktadır.[5]

19. yüzyılın ünlü matematikçilerinden Benjamin Peirce bir dersinde özdeşliği kanıtladıktan sonra şunları söylemiştir: "Bu özdeşlik ilk bakışta çelişkili gibi duruyor ancak bunu kanıtladıktan sonra gerçeğin ta kendisiyle karşı karşıya olduğumuzu görüyoruz."[6]

Stanfordlu matematik profesörü Keith Devlin, Euler özdeşliği hakkında şunları söylemiştir: "Euler özdeşliği aşkın gerçek anlamını kavrayan bir Shakespeare sonatı ya da insanın ruhuna işleyen bir resim gibi varoluşun en derinlerine iniyor."[7]

Çıkarımı [değiştir] Euler özdeşliğinin rastgele bir açıya uygulanması

Özdeşlik, karmaşık çözümlemedeki Euler formülünün özel bir durumudur. Euler formülü her x gerçel sayısı için aşağıdaki eşitliği sağlamaktadır.

eşitliği sağlanıyorsa

ifadesi elde edilir. Bunun nedeni

ve

eşitliklerinin sağlanmasıdır. Bunun ardından aşağıdaki eşitlik elde edilir.

ve bu eşitlik bizi Euler özdeşliğine götürür.

Euler Bağıntıları

double euler(double exp.'e atfen) bağıntıları

Genelleme [değiştir]

Euler özdeşliği aşağıda formülü verilen eşitliğin n = 2 durumunu sağlar.

Atıf sorunu [değiştir]

Euler, formülünün e sayısını cos ve sin terimleriyle ilişkilendirdiğini birçok yerde belirtmiştir ancak Euler'in kendi adına atfedilen özdeşliği bulduğuna dair somut bir kanıt bulunmamaktadır. Bazı kaynaklar bu özdeşliğin Euler'in doğumundan önce kullanılmakta olduğunu öne sürmektedirler.[8] (Durum böyleyse bu, Stigler adlandırma yasasına bir örnek oluşturabilir.) Bu nedenle, özdeşliğin Euler'e atfedilmesinin uygun olup olmadığı konusunda genel bir kabul yoktur.

Ayrıca bakınız [değiştir] Üstel fonksiyon Gelfond sabiti
0