Cevaplar

  • Eodev Kullanıcısı
2013-02-09T18:46:44+02:00

ÖRNEK :
P(x) = 2x3 + 3x2 – 5x + 4
Q(x) = 5x2 + 6x2 + 5
ise P(x) + Q(x) ve P(x) – Q(x) ifadelerinin eşitlerini bulunuz?

Çözüm :
P(x)+Q(x) = (2x3 + 3x2 –5x + 4) + 5x3+6x2+5
= 7x3 + 9x2 – 5x + 9
P(x)-Q(x) = (2x3 = 3x2 – 5x+4) – (5x3+6x2+ 5)
= 2x3 + 3x2 – 5x + 4 – 5x3 – 6x2 – 5
= –3x3 – 3x2 – 5x – 1

POLİNOMLARDA ÇARPMA

a) Tek terimli bir polinomun çok terimli bir polinomla çarpımını yapmak için çarpmanın toplama üzerine dağılma özelliği uygulanır.
Örneğin;
3x2(2x3 – 3x2 + 5x – 3) = 6x5 – 9x4 + 15x3 – 9x2 dir.

b) Çok terimlilerin çarpımında birinci polinomun her terimi ikinci polinomun her terimi ile ayrı ayrı çarpılır. Bunların toplamı alınır.
Polinomların çarpımında çarpımın derecesi çarpanların dereceleri toplamına eşittir.
d(P(x) . Q(x)) = d(P(x) + d(Q(x) ) dır.

ÖRNEK :
P(x) = x2 – 2x + 1
Q(x) = x3 – 3x2 ise P(x). Q(x) = ?

Çözüm :
P(x) . Q(x) = (x2 – 2x + 1) (x3 – 3x2)
= x5 – 3x4 – 2x4 + 6x3 + x3– 3x2
= x5 – 5x4 = 7x3  3x2

ÖRNEK :
P(x) = x3 – 7x
Q(x) = x3 + 7x ise P(x) . Q(x) = ?

Çözüm :
P(x) . Q(x) = (x3 – 7x) . (x3 + 7x)
= x6 + 7x4 – 7x4 – 49x2
= x6 – 49x2

ÖRNEK :
P(x) = x12 + x3 + x2 + 2x + 1
Q(x) = xn + xn–1 + x
( P(x) . Q(x) ) ın derecesi 15 ise n kaçtır?

Çözüm :
d ( P(x) . Q(x) = d ( P(x) ) + d(Q(x)) olduğu için
15 = 12 + n  n = 3 tür.

ÖRNEK :

polinomunun derecesi kaçtır?

Çözüm :
n + 24 ve 8n doğal sayı olmalıdır. Buradan n = 2 ise
2+24 = 1 ve 82 = 4 bulunur.
O halde polinom
P(x) = 3x + 2x4 = 3x2 + 4 biçimindedir. Azalan kuvvetlere göre sıralanırsa
P(x) = 2x4 + 3x2 = 3x + 4 dür.
P(x) in derecesi 4 olarak bulunur.



Örneğin (x + y)5 in açılımı istense 5. derece (6. sıra) karşısında bulunan sayılar sıra ile katsayı olarak alınırlar ve
(x+y)5 = x5 + 5xy4 + 10x3Y2 + 10x2y3 = 5xy4 + y5 olarak bulunur.
6) x – y ≠ 0 için
(x – y)0 = 1
(x – y)1 = x – y
(x – y)2 = x2 – 2xy + y2
(x – y)3 = x3 – 3x2y + 3xy2 – y3

9 3 9