Cevaplar

2012-10-30T17:40:18+02:00

Matematikte teoremler ve önermeler kendilerine özgü bir iç estetiğe sahip ispatlara dayanır. Zaten matematiği ispat ve ispat tekniklerinden ayrı olarak düşünmek mümkün değildir. Bu sebeple Matematikce sitemin bu bölmünü ispat tekniklerine ayırmak istedim. Çeşitli ders notlarımdan ve kitaplardan derlediğim bu çalışmayı lise düzeyinde bilgiye sahip bir öğrencinin anlayabileceği seviyeye getirerek, üniversite hayatına yeni atılacak olan gençlerin de bu heyecanı yaşamasını hedefledim.
          İspat tekniklerini genel olarak dört ana başlık altında toplayabiliriz:

Doğrudan İspat

Ters Durum İspatı

Olmayana Ergi (Çelişki) yöntemi

Tümevarım ile ispat

          Şimdi bu teknikleri açıklama ve örnekleriyle birlikte inceleyelim.

.:: 1 -  Doğrudan İspat : En bilinen ve kolay ispat tekniklerinden biridir. Bu ispat tekniğinde, bize teorem veya önerme içinde verilen şartlar aynen alınıp gösterilmek istenen sonuca ulaşılmaya çalışılır. Yani bilinen veya bize teoremde verilen bilgileri kullanarak istenilen sonuca ulaşmaya çalışacağımız tekniktir. Bu teknik genel olarak;
P --> Q    (P ise Q)
Şeklinde gösterilir. P hipotezinin (sol tarafın) doğru olduğu kabul edilerek, sağ tarafın (Q nun) doğruluğu elde edilir.
          Örnek 1 : Bir tek ve bir çift tamsayının toplamı tektir.
          İspat 1 : Önce m ve n gibi iki tane tamsayı ele alalım. Açıklamada da belitildiği gibi bunlardan birinin tek, diğerinin çift olduğunu kabul ederek, toplamlarının tek olduğunu göstereceğiz. Mesela m tek ve n de çift olsun. m+n nin tek olduğunu göstereceğiz. m tek ve n de çift olduğundan;
m = 2a + 1
n = 2b
olacak şekilde öyle a ve b tamsayıları vardır. Yani tüm tek sayıları 2a+1 ve tüm çift sayıları 2b şeklinde yazabiliriz. Bizden m+n isteniyordu.
m + n = 2a + 1 + 2b = 2a + 2b + 1 = 2(a + b) + 1
olur. a ve b tamsayı olduğundan a + b de bir tamsayıdır ve a + b ye k gibi bir tamsayı dersek;
m + n = 2(a + b) + 1 = 2k + 1 olur.
Yani m + n = 2k + 1 şeklinde yazılabilir. Öyleyse m + n tek sayı olmalıdır. İspat tamamlanır.
          Örnek 2 : Bir tamsayı 6 ile bölünebilirse, 2 katı 4 ile bölünebilir.
          İspat 2 : Bir a tamsayısını ele alalım. 6 ile bölünebildiğini kabul edelim. O zaman k bir tamsayı olmak üzere a=6k şeklinde yazılabilir. (Yani 6 ile bölünebiliyorsa k gibi bir tamsayının 6 katı olacaktır). Bunun 2 katı 4 ile bölünebilir mi diye bakacağız. 2 katını alırsak;
2a = 2.6k = 12k olur.
Biz 12 yi aynı zamanda 4.3 olarak da yazabiliriz. O zaman;
2a = 12k = (4.3)k = 4.(3k) olur.
k bir tamsayı olduğundan 3k da bir tamsayı olacaktır. Dolayısıyla buna m gibi bir tamsayı dersek;
2a = 4.(3k) = 4m olur.
Bu da bize 2a nın, 4 ün bir katı olduğunu yani 4 ile bölünebildiğini gösterir. Böylece ispat tamamlanır.

          Bu tür önermeleri doğrudan ispat tekniğini kullanarak görüldüğü gibi ispatlayabiliriz. Bu ispat tekniği kolay olmasına karşın bize her zaman yardımcı olamayabilir. Mesela "Karesi çift olan bir sayının kendisi de çifttir" şeklindeki bir önermenin ispatını bu yöntemle vermek oldukça güçtür. Bu sebeple başka ispat yöntemleri geliştirilmiştir. Sıradaki ispat tekniğini açıkladıktan sonra bu soruya tekrar dönüp, ispatının nasıl yapılabileceğini açıklamaya çalışacağım.

 .:: 2 -  Ters Durum İspatı : Bu ispat genel olarak P ise Q yu göstermek yerine Q değil ise P nin de olamayacağını göstermeye dayanır. Yani bu ifadeyi sözle açıklamak istersek; bize verilen kabullerden yararlanarak istenileni bulmak yerine, istenilenin olmaması (değilinin olması) durumunda, kabullerimizin de olamayacağını (yani değillerinin doğru olması gerektiğini) göstermeye dayanan bir ispat tekniğidir. Bu tekniği örnekler üzerinde daha rahat anlaşılabilir. Az önce belirttiğimiz önermeyi bu yöntemle ispatlamaya çalışalım;
          Örnek 3 :Karesi çift olan bir sayının kendisi de çifttir.
          İspat 3 : Burada P dediğimiz olay sayımızın karesinin çift olması, Q dediğimiz olay da bu sayının kendisinin çift olması yani;
 P = a sayısının karesi çifttir.
 Q = a sayısının kendisi çifttir.
(hatırlatma : bize verilen kabuller P olarak, istenen ise Q olarak kabul edilir). İlk ispat tekniğimizde P ise Q yu gösteriyorduk ve o teknikle bunu ispatlamanın güç olacağına deyinmiştik. Öyleyse şimdiki ispat tekniği ile yani Q değil ise P nin de olamayacağını gösterelim. Bunu söz ile ifade etmek istersek, bizim göstereceğimiz "Eğer a sayısı tek ise karesi de tektir." Bu ispat tekniğinde dikkat edilmesi gereken nokta bu Q değil ise P nin olmayacağını doğru olarak ifade etmektedir. Özetleyecek olursak; bu ispat tekniğinde "a nın karesi çift ise a da çifttir" ifadesini göstermek yerine "a tek ise karesi de tektir" ifadesini göstereceğiz. Şimdi bunu görelim. a yı tek kabul ettiğimizden, öyle bir k tamsayısı için a yı;
a = 2k + 1 oarak yazabiliriz.
a nın karesinin tek olduğunu göreceğiz. Karesini alırsak;
a2 = 4k2 + 4k + 1 = 4(k2 + k) + 1 olur.
ve k2 + k bir tamsayı olacağından buna m dersek;
a2 = 4(k2 + k) + 1 = 4m + 1 = 2.2m + 1
2m ifadesine de t dersek;
a2 = 2t +1 olur.
Bu da bize a2 nin tek olduğunu gösterir. Öyleyse a sayısı eğer tek ise karesinin de mutlaka tek olması gerektiğini gösterdiğimizden, karesi çift ise sayının kendisinin de çift olması gerektiğini söyleyebiliriz. Bu yöntemle önermeyi ilk yönteme göre çok daha kolaylıkla ispatlamış oluyoruz. Bu ispat yönteminin kullanılabileceği başka örnekler de vermeye çalışalım;

0
2012-10-30T17:48:42+02:00

Olmayana Ergi (Çelişkiyle ispat) Tekniği : Bu ispat tekniğinde hipotez aynen alınırken, hükmün bir parçası olumsuz alınır ve bir çelişki ortaya çıkarılır. O zaman yanlışın baştaki kabule dayandığı söylenerek ispat yapılır. Bunu örnekler ile görelim.
          Örnek 6 : Kendi kenisiyle toplandığında kendisini veren sayı sıfırdır.
          İspat 6 : Bir x sayısını ele alalım. Önermede bizden x+x=x ise x=0 olduğunu göstermemiz isteniyor. Bu teknik ile ispatı göstermeye çalışalım. Hükmü (veya bazı durumlarda hükmün bir parçasını) olumsuz olarak alalım. Yani kabul edelim ki, x sıfırdan farklı bir sayı olsun. Bu durumda x+x ifadesine bakalım. Önermede bize x+x in x olduğu verilmişti. Yani x+x=x denilmişti. Ayrıca biz biliyoruz ki x+x=2x tir. Öyleyse bu eşitlikleri birleştirerek;
x = 2x  elde ederiz. x i sıfırdan farklı kabul ettiğimizden dolayı taraf tarafa x leri sadeleştirirsek (x in sıfırdan farklı olduğunu kabul etmeseydik bu sadeleştirmeyi yapamazdık). 
1 = 2  sonucu elde edilir. Bu ise bir çelişkidir. Bu çelişki x i sıfırdan farklı almamızdan kaynaklanmaktadır. Öyleyse x=0 olmalıdır. Sonuç olarak x=0 olması gerektiğinden ispat tamamlanmış oldu.
          Bu önermeden de görüldüğü gibi hükmü olumsuz kabul ederek bize verilen hipotezi kullanıp bir çelişkiye vardık. Bu çelişkinin sebebi de hükmü olumsuz kabul etmemizdir. Tabi bu önermede x in sıfır olması gerektiği kolaylıkla görülebiliyor ancak tekniği anlayabilmek açısından böyle bir önerme seçtim. 
          Örnek 7 :  sayısının rasyonel sayı olmadığını gösterin.
          İspat 7 : Önermede bizden  sayısının irrasyonel bir sayı olduğunu göstermemiz isteniyor. Olmayana ergi yöntemiyle bu ispatı yapmaya çalışalım. Tekniğe göre hükmü olumsuz kabul edelim, yani sayısı rasyonel bir sayı olsun diyelim ve bir çalişkiye varalım. O zaman sayısını, tek ortak böleni 1 olan p ve q gibi iki tamsayının oranı şeklinde yazabiliriz. (Not: p ve q nun tek ortak böleninin 1 olması p/q nun bir tamsayı değil rasyonel sayı olmasını ve p/q da pay ve paydanın herhangi bir tamsayı ile sadeleştirilemeyeceğini verir). Yani  = p/q diyebiliriz. Her iki tarafın da karesini alalım. 2 = p2/q2 olur. Her iki yanı q2 ile çarparsak; 
2q2 = p2  olur. Öyleyse buradan p2 nin bir çift sayı olduğunu söyleyebiliriz. O zaman 3 nolu örnekte ispatladığımız sonucu kullanarak p nin de bir çift sayı olduğunu söyleyebiliriz. p çift bir sayı ise öyle bir n tamsayısı için p=2n olarak alalım. 
2q2 = p2  bulmuştuk. p nin 2n olan değerini burada yerine koyarsak;
2q2 = p2 = (2n)2  = 4n2 olur. Yani 2q2 = 4n2  dir. 2 leri sadeleştirirsek;
q2 = 2n2  olur. Bu ise bize q nun da bir çift sayı olduğunu gösterir. Öyleyse yine 3 nolu örnekte ispatladığımız sonucu kullanırsak q nun da bir çift sayı olduğunu söyleyebiliriz. q çift bir sayıysa öyle bir m tamsayısı için q=2m olarak yazabiliriz.
Bir önceki adımda da p=2n olarak bulmuştuk. Öyleyse p=2n ve q=2m olduğundan p ve q nun 2 gibi bir ortak böleni vardır. Ancak başta p ve q nun tek ortak böleninin 1 olduğunu söylemiştik. Bu durumda bir çelişki karşımıza çıkmıştır. Bu çelişkinin nedeni  yi rasyonel bir sayı olarak kabul edip tek ortak böleni 1 olan p ve q tamsayılarını kullanarak p/q şeklinde yazmamızdan kaynaklanmaktadır. Öyleyse  sayısı rasyonel bir sayı olmaz, yani irrasyoneldir.

0