Cevaplar

En İyi Cevap!
2012-11-10T17:27:36+02:00
Kombinasyon

Tanım: A, n elemanlı sonlu bir küme ve r ≤ n olmak üzere, A kümesinin r elemanlı her alt kümesine, bu kümenin r li kombinasyonu denir ve C (n, r) veya
biçiminde gösterilir.

ÖRNEKLER
1. Burcu Gizem ve Ecem’ den oluşan 3 kişilik bir gruptan;
a) Biri başkan, diğeri başkan yardımcısı olmak üzere, 2 kişi kaç türlü seçilebilir?
b) Bir yarışmaya gönderilmek üzere, 2 kişi kaç türlü seçilebilir?

Çözüm:

a) A= {Burcu, Gizem, Ecem} kümesinden; birincisi başkan, ikincisi başkan yardımcısı olmak üzere ikililer seçelim. Bu ikililer, A kümesinin ikili permütasyonlarıdır.

A kümesinin ikili permütasyonları
(sıralı ikililer)

(Burcu, Gizem) (Gizem,Ecem)
(Burcu, Ecem) (Ecem, Burcu)
(Gizem, Burcu) (Ecem, Gizem)

Bu sıralı ikililerin sayısı 6’dır. Bunu, P(3, 2) = 6 biçiminde yazarız. Burada ayrıca, (Burcu, Gizem) ve (Gizem, Burcu) ikililerin farklı permütasyonlar olduğu açıktır.
Permütasyonda sıra önemlidir.

b) A={Burcu,Gizem,Ecem}kümesinden,bir yarışmaya gönderilmek üzere seçilecek 2 kişilik kümeler oluşturalım.Bu kümeler, A kümesinin 2 elemanlı alt kümeleridir.

A kümesinin ikili alt kümeleri
(kombinasyonlar)

{Burcu, Gizem}
{Burcu, Ecem}
{Gizem, Ecem}
A kümesinin 2 elemanlı alt kümelerinin (kombinasyonlarının) sayısı 3 tür. Bunu C(3,2) = 3 biçiminde yazarız. Ayrıca, {Burcu, Gizem} ve {Gizem, Burcu}kümelerinin aynı olduğu açıktır.
Kombinasyonda sıra önemli değildir.

2. A= {a,b,c} kümesinin 2 elemanlı alt kümelerini ve 2 li permütasyonlarını yazalım.

Çözüm:
2 li alt kümeleri 2 li permütasyonları
(kombinasyonları) (sıralı ikililer)

{a,b} (a,b) (b,a)
{a,c} (a,c) (c,a)
{b,c} (b,c) (c,b)

Yukarıda gördüğünüz gibi, 3 elemanlı kümenin 2 li alt kümelerinin sayısı,
C(3,2)=3 ve 2 li permütasyonların sayısı p(3,2)=6 dır.

Bunu, 2 ! . C(3,2) = P(3,2) biçiminde ifade ederiz.

Teorem: r n olmak üzere, n elemanlı sonlu bir kümenin r li kombinasyonlarının sayısı,
C(n,r)= = dir.

İSPAT: n elemanlı bir kümenin, r elemanlı alt kümelerinin sayısı C(n,r) dir. Bu alt kümelerin her birindeki elemanların tüm sıralanışlarının (permütasyonlarının) sayısı da r! olduğundan r! . C(n,r)= P(n,r) yazabiliriz. Buradan,

C(n,r)= = = bulunur.

ÖRNEKLER:
1. A={1,2,3,4,5} kümesinin 3 elemanlı alt kümelerinin (3 lü kombinasyonlarının) sayısını bulalım.

Çözüm: A kümesinin 5 elemanlı olduğundan, 5 in 3 lü kombinasyonunu bulacağız.
1. YOL: C(5,3) bulunur.
2. YOL: C(5,3) bulunur.

2. 10 kişilik bir sporcu grubundan, 5 kişilik bir basketbol takımı kaç farklı biçimde oluşturulabilir.

Çözüm: 10 kişilik gruptan 5 kişi seçerken sıra önemli değildir. Örneğin, bu takımın {Ali, Can, Seçkin, Suat, Okan} veya {Can, Seçkin, Okan, Ali, Suat} olması farklı seçim olmaz. Bu nedenle seçimi kombinasyonla yaparız. O halde, oluşturulacak 5 kişilik grupların sayısı,
C(10,5) olur.

3. 2.C(n,2)=c(2n,1) ise n kaçtır?

Çözüm: 2.C(n,2)=C(2n,1)

n.(n-1)=2n n -3n=0 n=0 v n=3 bulunur. n=0 olmayacağından n=3 tür.

4. Herhangi 3 tanesi doğrusal olmayan 6 noktadan kaç doğru geçer.

Çözüm: 6 noktadan seçilecek olan herhangi iki noktanın sırası önemli değildir (Bu noktalardan herhangi ikisi A,B ise {A,B} ile {B,A} seçimleri aynı doğruyu gösterir.). O halde, oluşacak doğru sayısını, kombinasyonla buluruz. Bu durumda, 6 noktadan,

doğru geçer.

 

1 5 1
2012-11-10T20:21:11+02:00

Kombinasyon

Tanım: A, n elemanlı sonlu bir küme ve r ≤ n olmak üzere, A kümesinin r elemanlı her alt kümesine, bu kümenin r li kombinasyonu denir ve C (n, r) veya
biçiminde gösterilir.

ÖRNEKLER
1. Burcu Gizem ve Ecem’ den oluşan 3 kişilik bir gruptan;
a) Biri başkan, diğeri başkan yardımcısı olmak üzere, 2 kişi kaç türlü seçilebilir?
b) Bir yarışmaya gönderilmek üzere, 2 kişi kaç türlü seçilebilir?

Çözüm:

a) A= {Burcu, Gizem, Ecem} kümesinden; birincisi başkan, ikincisi başkan yardımcısı olmak üzere ikililer seçelim. Bu ikililer, A kümesinin ikili permütasyonlarıdır.

A kümesinin ikili permütasyonları
(sıralı ikililer)

(Burcu, Gizem) (Gizem,Ecem)
(Burcu, Ecem) (Ecem, Burcu)
(Gizem, Burcu) (Ecem, Gizem)

Bu sıralı ikililerin sayısı 6’dır. Bunu, P(3, 2) = 6 biçiminde yazarız. Burada ayrıca, (Burcu, Gizem) ve (Gizem, Burcu) ikililerin farklı permütasyonlar olduğu açıktır.
Permütasyonda sıra önemlidir.

b) A={Burcu,Gizem,Ecem}kümesinden,bir yarışmaya gönderilmek üzere seçilecek 2 kişilik kümeler oluşturalım.Bu kümeler, A kümesinin 2 elemanlı alt kümeleridir.

A kümesinin ikili alt kümeleri
(kombinasyonlar)

{Burcu, Gizem}
{Burcu, Ecem}
{Gizem, Ecem}
A kümesinin 2 elemanlı alt kümelerinin (kombinasyonlarının) sayısı 3 tür. Bunu C(3,2) = 3 biçiminde yazarız. Ayrıca, {Burcu, Gizem} ve {Gizem, Burcu}kümelerinin aynı olduğu açıktır.
Kombinasyonda sıra önemli değildir.

2. A= {a,b,c} kümesinin 2 elemanlı alt kümelerini ve 2 li permütasyonlarını yazalım.

Çözüm:
2 li alt kümeleri 2 li permütasyonları
(kombinasyonları) (sıralı ikililer)

{a,b} (a,b) (b,a)
{a,c} (a,c) (c,a)
{b,c} (b,c) (c,b)

Yukarıda gördüğünüz gibi, 3 elemanlı kümenin 2 li alt kümelerinin sayısı,
C(3,2)=3 ve 2 li permütasyonların sayısı p(3,2)=6 dır.

Bunu, 2 ! . C(3,2) = P(3,2) biçiminde ifade ederiz.

Teorem: r n olmak üzere, n elemanlı sonlu bir kümenin r li kombinasyonlarının sayısı,
C(n,r)= = dir.

İSPAT: n elemanlı bir kümenin, r elemanlı alt kümelerinin sayısı C(n,r) dir. Bu alt kümelerin her birindeki elemanların tüm sıralanışlarının (permütasyonlarının) sayısı da r! olduğundan r! . C(n,r)= P(n,r) yazabiliriz. Buradan,

C(n,r)= = = bulunur.

0